If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+11=31
We move all terms to the left:
5x^2+11-(31)=0
We add all the numbers together, and all the variables
5x^2-20=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| -16=2(2x-2) | | 2(2x=3)=-3 | | 2z+80+(100-2z)=180 | | 4(4x-3)=-28 | | 2x^-1/2=0 | | 4x-900=0 | | 18=2(x-2)+6 | | 2·x+5=85 | | -33=3(3x+1) | | -2x-42=5(4x-4) | | 4x2+13x−12=0 | | b=13.6 | | 4•x-20=4 | | a(2−a)=0 | | k^2+k+2=0 | | y÷4=40 | | 4(x+3)+7x−9=10 | | (x+9)^9=-1 | | 24=10-15h | | r^2+12=50 | | 2x•4=160 | | y2=-y | | x-½=¾ | | -4=2z/4+10 | | k^2+2k-17=0 | | (x+27)*15=570 | | 3^(2t-1)=7^(t+2) | | 10m=1000 | | 2x=5x+50 | | 25^2x=25^5x+10 | | 25^2x=12^5x+10 | | (5-2y)(2+3y)=0 |